
EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2010)
Marc Alexa & Ellen Yi-Luen Do (Guest Editors)

© The Eurographics Association 2010.

Rata.SSR: Data Mining for Pertinent Stroke Recognizers

Samuel Hsiao-Heng Chang, Beryl Plimmer and Rachel Blagojevic

University of Auckland, Computer Science, Auckland, NZ

ABSTRACT

While many approaches to digital ink recognition have been proposed, most lack flexibility and adaptability to pro-
vide acceptable recognition rates across a variety of problem spaces. Time and expert knowledge are required to
build accurate recognizers for a new domain. This project uses selected algorithms from a data mining toolkit and a
large feature library, to compose a tailored software component (Rata.SSR) that enables single stroke recognizer
generation from a few example diagrams. We evaluated Rata.SSR against four popular recognizers with three data
sets (one of our own and two from other projects). The results show that it outperforms other recognizers on all
tests except recognizer and data set pairs (e.g. PaleoSketch recognizer and PaleoSketch data set) – in these cases
the difference is small, and Rata is more flexible. We hence demonstrate a flexible and adaptable procedure for
adopting existing techniques to quickly generate accurate recognizers without extensive knowledge of either AI or
data mining.

Categories and Subject Descriptors (according to ACM CCS): I.7.5 [Document and Text Processing]: Graphics rec-
ognition and interpretation, I.2.10 [Artificial Intelligence]: Shape, I.5.2 [Pattern Recognition]: Classifier design
and evaluation.

1. Introduction

Accurate recognition of hand-drawn input is a basic re-
quirement for computer-based sketch tools to reach their
potential. Many of the existing recognizers work well for
the specific context for which they were designed, but lack
flexibility and extensibility. This project examines existing
data mining techniques build within WEKA [HFH*09] to
compose context specific recognizers. Our particular inter-
est is in diagrams; however there are many different types
of diagrams each with different types of components, and
syntactic and semantic rules. Our approach is to automati-
cally compose an accurate stroke (gesture) recognizer from
examples. This allows accurate stroke recognition results to
be passed to the other parts of the recognition process such
as joining related strokes and deciphering semantics.

One of the main approaches to ink recognition is to com-
pute features of the ink and use these features to discrimi-
nate between different classes of strokes. Many research
projects use this approach and improve the accuracy by
selecting features and fixing the threshold of each feature
statistically [PPGI07] or heuristically [YC03]. While such
an approach can improve results for a particular context, it
is time consuming and the resulting recognizer is inflexible.
These ‘hard coded’ [JGHD09] recognizers require signifi-
cant work to recognize new shapes, because appropriate
ink features and new thresholds need to be found manually.
As there are essentially an infinite number of diagrams,
designing a recognizer for each is impractical.

An alternative approach is to support a range of common
shape types to allow more flexibility [FPJ02, PH08]; how-
ever, including shapes that are not required is likely to
reduce accuracy [FPJ02]. Yet another approach is template
matching, where processed input strokes are compared with
given templates on the pixel data to find the similarities
[Gro94, KS04, WWL07]. New shapes can be simply added

by specifying new templates. However because this ap-
proach relies mainly on the pixel data, it does not fully
exploit the rich temporal data contained in digital ink.

Machine learning techniques that automatically find rela-
tionships between features can result in extensible recog-
nizers which are capable of utilizing rich feature sets
[Rub91, WNGV09]. This is a promising approach that
avoids the disadvantages of hard-coded and pattern match-
ing recognizers. However, there are two major limitations
to current diagram recognition research using this ap-
proach: first, the number of features used in each project
has been limited; second, there is no guarantee that the
machine learning algorithms employed are the best because
most projects have focused on one or two algorithms.

In this project we use WEKA [HFH*09], a data mining
tool which provides many data mining algorithms, to ex-
plore the performance of different algorithms using a large
set of computable ink features. A set of well performing
algorithms were tuned to their best configurations and from
this set four algorithms are combined in an ensemble to
provide an accurate, trainable recognizer. The recognizer is
packaged as Rata.SSR, to allow non-experts to generate
single stroke recognizers through a user interface in Data-
Manager [BPGW08]. The generated recognizers can then
be used in other software applications via a simple API.
We have deliberately scoped this project to simple ges-
tures, ignoring joining and/or splitting which are a usual
part of basic shape recognizers, so that we can accurately
measure the single stroke recognition success rates.

The rest of the paper is organized as follows. First a
small scenario of use describes how a user would build a
recognizer with Rata.SSR. Section 3 summarizes related
literature on diagram ink recognition. Section 4 presents
the construction of Rata.SSR. We then present the result of
our evaluation. Finally the paper ends with the discussion
and conclusions.

© The Eurographics Association 2008.

2. Scenario of Use

We will start with a small example to show how a single
stroke recognizer for any type of diagram can be quickly
generated without much effort. Imagine one wants a logic
diagram recognizer. The first step is to collect a number of
example sketches in DataManager [BPGW08], as shown in
Figure 1. Approximately 10 examples of each class are
required – this can be achieved by asking four people to
each draw a diagram that includes three examples for each
class. The strokes in these sketches must then be labeled
with their shape class name. From this a feature data set is
generated by DataManager using the labeled strokes.

Figure 1: Sample logic diagram collected in DataMa-

nager

Using the interface in Figure 2 the user selects the fea-
ture data set file, the algorithm (the default is recommend-
ed) and a place to save the recognizer model file. The gen-
eration of the model takes just a few minutes. It can then be
checked in the manual test panel. To incorporate the model
into a program, the DLLs, a model file and just two lines of
code are required, (1) to load the model and (2) to recog-
nize a stroke – there are several overloads for the classify
method to cater for different requirements.

c = ClassifierCreator.GetClassifier("…//rata.model"); (1)

string result = c.classifierClassify(targetStroke); (2)

Our experiments presented below show that one can ex-
pect recognition rates over 95% for a wide range of differ-
ent types of diagram using Rata.SSR as simply as we have
described above.

Figure 2: DataManager interface to Rata.SSR

The design is flexible. New computable ink features can
be added to DataManager. Instead of creating more shape
classes than necessary, for each given problem the recog-
nizer is trained for only the required shape classes. Fur-
thermore, because the process is done by data mining, very
little human work is required. In addition, the adoption of
WEKA allows extendable algorithms from data mining
experts, and optimizing opportunities for expert users.

3. Related Work

Obtaining information about the digital ink strokes is al-
ways the key to recognition; the way this information is
deduced decides the mechanism used in these systems.
Some use similar approaches to image processing, match-
ing shape templates against input, for instance [Gro94,
KS04, WWL07]. Others hard-code the threshold of ink
features for each shape, such as [CSKK02, FPJ02, SSD01,
YC03]. While a third group also use features, they combine
the features with machine learning algorithms to train the
recognizers, for example [FPJ02, HEP*08, Rub91].

Template matching approaches are similar to many im-
age processing techniques: a user creates a number of ex-
ample shapes which are used as templates. These templates
are constructed by standardizing the number of points,
rotating to a standard position, and scaling to a standard
size. Data to be recognized is manipulated using the same
process and then pixel matched to the templates. Examples
of recognizers using this approach are [Gro94, KS04,
WWL07]. Although these recognizers are extendable, they
do not utilize the full information of the ink strokes and the
rotation makes it difficult to differentiate some classes, for
example rectangles from diamonds. Reported recognition
rates vary from 87% [KS04] to 99.02% [WWL07].

Both hard-coded and trainable recognizers use computa-
ble features of the ink (such as stroke length and curvature),
as opposed to pixel data used by template matchers. Hard-
coded recognizers [FPJ02] apply fixed thresholds to the
different features to differentiate the classes of interest. For
example a closed shape such as a circle would have the
start and finish points ‘close together’. The thresholds have
been arrived at either heuristically [SSD01, YC03] or by
statistical methods [FPJ02, PPGI07]. While such an ap-
proach is effective in distinguishing lines and arcs in seg-
mentation problems [CSKK02, SSD01, YC03], they have
limited flexibility for application to more complex recogni-
tion tasks. Systems built this way are cost ineffective: a lot
of effort is required to extend the number of supported
shapes [AVK93, FPJ02].

Training based approaches support flexibility by convert-
ing ink data to features, and applying machine learning
techniques to find relationships [FPJ02, HEP*08, Rub91].
Although many training approaches exist, few have applied
a large number of features, except [WNGV09] which has
758 features (although these are mostly recombination of a
base set of 48 features). The other part of the training-based
approach is the machine learning algorithms employed.
Most studies have reported on the use of one or two algo-
rithms. Reported recognition rates for trainable recognizers
are in the range 95.1% [FPJ02] to 99.2% [WNGV09]. This
approach is promising, yet not fully explored. A similar
area, multi-media machine learning, reports many success-

 Specify the target feature data set file Algorithm to use

 Name of trained model file Manual test area

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2010)
Marc Alexa & Ellen Yi-Luen Do (Guest Editors)

© The Eurographics Association 2010.

ful applications. They suggest the application of rich fea-
ture sets [BSS04, VA05] and comparing different algo-
rithms to rank the effectiveness of each [CSJ00, LZ04,
Tay08].

Data mining tools such as WEKA [HFH*09] and Ra-
pidMiner [Rap10] provide many data mining algorithms. A
large variety of features have been used in different ink
recognition projects, and most are assembled into the fea-
ture library in DataManager [BPGW08]. In this project we
combine the feature library of DataManager with the algo-
rithms in WEKA to compose a fully trainable recognizer
that performs as well as the best of other techniques, yet is
a good deal more flexible.

4. Our approach

In order to explore multiple recognition algorithms and
strategies, for the purposes of combining these into an en-
semble, we have used the WEKA data mining tool
[HFH*09]. First the full range of suitable WEKA algo-
rithms was trialed and a set of well performing algorithms
were selected for optimization (section 4.2). The optimiza-
tion process, explained in section 4.3, used feature data
from the three different data sets described in section 4.1.
After ranking (4.4) the optimized algorithms were used
together with the data sets to explore ensemble strategies
(4.5), again using WEKA algorithms. From this process an
ensemble of four tuned algorithms form the core of Ra-
ta.SSR. Finally an interface to WEKA from DataManager
and a wrapper for Rata.SSR have been developed so that it
can be used as described in Section 2 above.

4.1 Data sets for data mining

Feature data is required to run an initial trial on the algo-
rithms; they are also necessary for the optimization and the
ensemble building process. For the initial identification of
possible algorithms a small simple data set of graph draw-
ings was used. For the more critical algorithm optimization
and ensemble, three diagram sets were collected from 20
participants. As at this stage we are concentrating on single
stroke recognition, the participants were asked to draw
each component in a single stroke. A summary of the data
in each is shown in Table 1.

ShapeData GraphData ClassData

Example

Collection
method

Isolated In‐situ In‐situ

Rectangle 80 ‐ 170

Ellipse 80 146 ‐

Triangle 80 ‐ 57

Line 80 172 215

Arrowhead 80 173 96

Diamond 80 ‐ 60

Total 480 491 598

Table 1. Data sets used for algorithm optimization

The data sets are roughly differentiated by the number of
shape types and the collection method. A variety of data
sets should ensure the optimized algorithms can be applied
to different diagram types.

These data sets were collected and labeled in DataMa-
nager [BPGW08]. From the labeled sketches DataManager
can compute ink features, with the current version it is
capable of generating 114 features [BCP10]. These features
measure aspects of individual strokes such as curvature,
size and density, and spatial and temporal relationships to
other strokes in the diagram. They can be calculated in
0.087 seconds for each stroke. Data Manager’s feature
library is available online [Bla09].

4.2 Algorithm exploration

WEKA [HFH*09] was selected to supply the data min-
ing algorithms: it is an open source tool which provides
many data mining techniques. As WEKA is developed to
support different data mining problems, each algorithm
exposes settings that can be changed to tune it.

WEKA includes many algorithms and not all are suitable
for ink feature data. We analyzed all algorithms provided
by WEKA, with their default settings, on a simple data set.
Among those algorithms, forty stood out as having higher
accuracy than the others (greater than 90%). This number
needed to be reduced for more detailed analysis. Although
we could pick the top performing ones, the fact that a re-
cognizer performed well on this simple data set does not
guarantee its performance with other data sets. Further-
more, because we planned to explore combining algorithms
with ensemble techniques, algorithms with strength in dif-
ferent aspects were desirable. In the end nine algorithms
were selected which had good performance and differed in
their underlying mechanisms. They were Bagging (BAG),
Bayesian Network (BN), Ensembles of Nested Dichoto-
mies (END), LogitBoost Alternating Decision Tree (LAD),
LogitBoost (LB), Logistic Model Trees (LMT), Multilayer
Perceptron (MLP), Random Forest (RF) and Sequential
Minimal Optimization (SMO), each as implemented in
WEKA [HFH*09].

4.3 Algorithm Optimization

Each algorithm in WEKA contains several settings
which can be adjusted to alter the nature of that algorithm.
The optimization conducted on each algorithm was a five
step tuning process:

 Get the base performance from default settings

 Optimize each setting independently

 The optimized settings were combined to produce an
optimized algorithm

 A series of evaluations between the optimized algo-
rithm and the base algorithm, to select the more
promising one

 An attribute selection process to further tune the al-
gorithm – although this proved not to be useful

In the first step the data sets were used to train and test
each algorithm with the default settings using 10 fold cross

© The Eurographics Association 2008.

validation. The results for this are shown in Table 2 column
‘Default’. Next we looked at the settings available for each
algorithm in turn. WEKA makes different settings available
depending on the algorithm: for example, users can specify
the number of trees for Random Forest, or the number of
iterations LogitBoost should run. Settings were considered
individually; default values were used with the exception of
the one being analyzed. To settings being studied, both true
and false cases were applied if they are binary, and numeri-
cal settings were tested with a series of different values.
The settings were applied to each data set independently.
For each setting, the accuracies generated by changing its
value were compared, and the value which returned the
highest accuracy at the lowest cost was taken as the optimal
value. In most cases the optimal setting was the same or
had the same trend across data sets. If a setting had differ-
ent effects on different data sets, the average of the data
sets was taken. The optimized algorithm is that with all the
individual settings at their optimal value.

We did not consider effect of different combinations of
settings because of practical time and computational con-
straints. While each individual setting performs well with
its optimal values, combining optimal values does not nec-
essarily give the best results. Hence for each optimized
algorithm we repeated the 10 fold cross validation (Table 2
column ‘Opt’).

While 10 fold cross validation can reduce the effect of
over-fitting, it is not perfect for diagram recognition. Al-
though over-fitting of training examples is prevented, be-
cause cross validation randomly selects training examples
from the data set, each participant could participate in train-
ing data as well as testing data. Such situations are too
optimistic for ‘out of the box’ recognizers where users are
different from the ones who provided training data. Addi-
tionally, we are interested in the association between the
numbers of training examples versus the resulting accuracy
of a classifier. Based on these considerations two splitting
experiments, random splitting and ordered splitting, were
conducted. For each experiment, the data is split into train-
ing and testing. A 10% splitting indicates 10% of the data
was selected for training and the remaining 90% for testing.
Nine different splits were chosen, from 10% to 90% with
10% intervals.

Random splitting selects training examples randomly
from the input data. To remove the noise the average of ten

rounds is taken. Although a participant can still appear in
both training and testing, this experiment shows the rela-
tionship between the number of training examples and the
accuracy. Ordered splitting selects training examples from
the start of the data set. For example, with a data set of 500
strokes, 10% splitting will take the first 50 strokes as train-
ing examples, while the rest become testing examples.
Because our data sets were organized in the order of partic-
ipants, and the numbers of strokes drawn by each of the 20
participants is similar, we can assume that each 10% in
ordered splitting is equivalent to two participants, which
ensures the training examples are from different partici-
pants who presented testing examples. The average results
for the random and ordered splitting results are presented in
Table 2. We noted that all algorithms had increased accura-
cy with more data, and all reached their maximum accuracy
with less than 50% of the data.

The final step was an attribute selection experiment. As
all 114 features were used, we were concerned about com-
putation time for on-line, real-time recognition. Although it
takes only 0.087 seconds to calculate on a desktop with an
Intel® Core™2 Duo Processor E8400 and 4GB of RAM,
we reasoned that ineffective features should be discarded;
furthermore, the addition of new features in the future will
most likely increase the calculation time. Wrapper subset
evaluator, implemented in WEKA, is a suitable approach
for attribute selection and it has been successfully applied
to diagram recognition [PH08]. We compared the attribute
selected algorithms with their default version, with 20%
random splitting. The results are presented in Table 2 col-
umn ‘Attribute Selection’. Two algorithms had marginally
improved accuracy; however, the training time increased
significantly for all algorithms. We hence decided not to
apply attribute selection in this study.

4.4 Algorithm Ranking

In order to rank the algorithms we combined results from
the different evaluations described above. In most cases we
used the optimized algorithm; however the optimized SMO
algorithm performed worse than its default version, so the
default was used in the ranking. In addition we used the
default version of LogitBoost as it performed almost equal-
ly with the optimized version in the 10 fold, and the default
version performed better in the splitting tests.

As noted above, the splitting experiments suggested al-

10 fold
Random splitting average Ordered splitting average Attribute

Selection Rank10%‐90% 50%‐90% 10%‐90% 50%‐90%

Default Opt R Default Opt R Default Opt R Default Opt R Default Opt R Default AttSel

BN 97.5 98.6 1 96.6 97.9 1 97.1 98.4 1 94.7 96.3 1 95.2 97.5 1 95.9 94.0 1.0

RF 97.9 98.4 2 96.4 97.7 2 97.6 98.2 2 93.2 95.4 2 94.1 96.1 4 95.0 93.8 2.3

LAD 96.4 98.6 1 95.2 97.6 3 96.2 98.1 3 91.2 94.3 3 94.2 96.4 2 ‐‐ ‐‐ 2.4

LB 98.4 98.7 2 96.9 94.7 4 98.0 98.2 4 93.1 92.3 4 96.3 96.9 3 95.8 92.8 3.4

LMT 98.2 98.4 2 95.7 96.1 6 97.2 97.3 7 91.4 91.5 5 95.0 95.2 6 95.3 93.0 4.9

MLP 98.4 98.4 2 95.9 96.0 7 97.6 97.6 5 90.5 90.7 7 95.3 95.3 5 93.8 94.2 5.3

END 97.3 97.9 4 95.2 96.2 5 96.8 97.4 6 90.1 91.0 6 93.6 94.6 7 93.8 92.2 5.4

SMO 98.2 98.0 3 95.4 94.4 8 97.1 96.0 8 90.1 88.9 8 93.8 93.1 8 93.3 93.7 6.8

BAG 96.1 96.4 5 94.6 95.3 9 95.9 96.3 9 89.8 89.8 9 92.1 92.5 9 93.8 92.6 8.0

Voting 99.4 99.6 97.9 98.4 99.0 99.3 96.7 97.4 97.8 98.3 ‐‐ ‐‐ ‐‐

Table 2. Algorithm results and rankings (mean of tests over the three data sets described in section 4.1)

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2010)
Marc Alexa & Ellen Yi-Luen Do (Guest Editors)

© The Eurographics Association 2010.

gorithms have better performance with more training data.
Reasoning that in real world usage more training examples
will be available, rankings from splitting experiments with
training data from 50% to 90% are included separately.
However since they are using the same information as used
by Random Splitting (RS) and Ordered Splitting (OS), we
decided not to treat RS50 and OS50 as equal weight. The
ranking was calculated by applying a nominal ranking
score (as shown in Table 2) to each algorithm for each
experiment, and applying the following formula:

ܴ݃݊݅݇݊ܽ ݁݃ܽݎ݁ݒܣ ൌ
݈݀10݂ ܴܵ ܱܵ 0.5ሺܴܵ50 ܱܵ50ሻ

4

 Bayesian Network demonstrates the best overall per-
formance, as shown in Table 2. LogitBoost shows an inter-
esting case: although it generally performs well, it produces
a comparatively poorer performance with the full splitting
experiments. Investigation suggested that this is because it
tends to over-fit with less training examples.

4.5 Ensemble

Two ensemble strategies were explored: voting and
stacking. Voting combines classifiers by averaging the
probability estimates of each class and making decisions on
the highest possible classification. Stacking is more sophis-
ticated: it applies two levels of classification by using a
meta-classifier to classify the results returned by each con-
tributing algorithm. As the meta-classifier should be rela-
tively simple [WF05], we tested Zero R, Naïve Bayes, J48,
and Simple Cart; among which Naïve Bayes has the best
performance. Surprisingly, the results show that voting has
higher accuracy (about 1% more). Because voting also
requires less training time, we decided to focus on applying
it as the ensemble strategy.

Different combinations of the base nine algorithms were
explored to maximize the recognition rate and minimize the
computation time – as nine algorithms have 511 possible
combinations it was impractical to do an exhaustive search.
After exploring a variety of strategies we applied the fol-
lowing steps using 10-fold cross validation:

1. Find the best number of algorithms by starting with
all algorithms and progressively removing the lowest
ranked algorithms. By comparing all the results, we
found four contributing algorithms to be optimum.

2. Swap the worst performing of the four algorithms
with a lower ranked algorithm and compare the re-
sults. If it improves the recognition rate retain it.

3. Repeat 2 for all algorithms.

We found that the voting by averaging the results with
the combination of BN, LAD, MLP and LMT makes the
best ensemble. A statistical Z-test was performed between
this ensemble and the best performing algorithm, BN. On
their average of all optimized results, it was confirmed that
the difference was statistically significant, with a standard
error of 0.003 and p-value of 0.011.

4.6 Data Manager Interface and Software Component

As our goal is to have a recognizer that can be used by
other programs, we built a component which provides a

simple interface connecting DataManager and WEKA, and
also allows for the use of WEKA generated algorithms in
C# programs. There are three motivating factors for this:
WEKA is a complex tool that takes some time to learn, and
by simplifying the interface non-experts will be able to use
our configured WEKA algorithms; recognizers generated
in WEKA are not immediately consumable by other pro-
grams; and finally WEKA is a Java tool which does not
natively support C# sketch tools, so we required that it be
encapsulated within a C# Java interface.

Although training only requires a list of features, because
these features are collected and labeled through DataMa-
nager, an interface was built within DataManager for train-
ing the recognizers. This interface is shown in Figure 2.
The user specifies the feature and output file locations and
selects the algorithm from a dropdown list. Currently the
list contains the ensemble described in section 4.5 and the
optimized individual algorithms from section 4.3, hence
users can ignore the configuration details. This interface
makes it easy for users to collect and label data, and gener-
ate a recognizer all from the one tool. It also hides the
complexity of WEKA.

For the Java – C# compatibility we applied IKVM.NET
[Fri09] to translate the WEKA library from its native JAR
file package into a C# compatible DLL.

The file produced from the DataManager training inter-
face is a standard WEKA model file. It is a serialized java
object which contains an exact copy of a trained recognizer
including all the thresholds and settings; for example, for a
tree algorithm it would have the feature and threshold value
for each node in the tree. In the case of an ensemble, it
contains the ensemble configuration and the configurations
of all the contributing algorithms.

These recognizers can be used through Rata.SSR. It is
the bridge between recognizers and programs which need
recognition capability. It is implemented as a DLL for ease
of transfer and use. The individual WEKA recognizers act
like components, with Rata.SSR as the central recognition
engine which can generate these components as well as use
them. Individual recognizers or application programs do
not have to provide code for functionality like feature cal-
culation, as they are all implemented within Rata.SSR.

While Rata.SSR is implemented to ensure novice users
can use it, it is also important to consider advanced users
with data mining knowledge. The preset configurations for
the algorithms are currently optimized for our experiment
data presented in Table 1; although they promise a high
recognition rate, for individual diagrams the configurations
can be further tuned. The open source nature of WEKA
allows it to be extended by data mining experts. New
WEKA algorithms can then be used in Rata.SSR by updat-
ing the WEKA.dll. Additionally, experts can use the
WEKA explorer interface to customize their recognizers.
Because we unified the file structure of the exported clas-
sifiers of Rata.SSR and WEKA, the customized WEKA
classifier can be loaded by Rata.SSR and used to recognize
C# strokes. This configuration enables users to make fur-
ther classification for individual classifiers, as well as al-
lowing the use of all algorithms provided by WEKA.

© The Eurographics Association 2008.

5. Evaluation

To evaluate Rata.SSR we have compared it with four
other recognizers using one of our own data sets and two
data sets that have been used to evaluate other recognizers.

The other recognizers used in the evaluation are: $1
[WWL07], Rubine [Rub91] (as implemented in InkKit
[PF07]), PaleoSketch [PH08], and CALI [FPJ02]. $1 and
Rubine are trainable recognizers so any data set can be
used. PaleoSketch and CALI, however, are hardcoded so to
be fair we must consider their effectiveness on the classes
that we can reasonably map between the data sets used in
the evaluation and what they can recognize.

The data sets used in the evaluation are: our own Flow-
Chart data set, a $1 data set, and a PaleoSketch data set.

Figure 3: Example diagram from the Flowchart data set
with strokes color coded by class.

The flowchart data set (Figure 3) was collected at the
same time and from the same participants as the data set
described in section 4.1. From the 20 participants there are
683 strokes which broken down by class are: rectangle 99,
ellipse 42, line 242, arrow-head 239 and diamond 61. They
were collected and labeled in DataManager [Bla09].

$1 data set from [WWL07] PaleoSketch data set

Figure 4: Data sets from other research

The $1 data set downloaded from [WWL09] has 16 dif-
ferent classes (Figure 4). It has been collected as isolated
shapes, in a similar way to our ShapeData, from 11 partici-
pants. There are 16 shape classes with 330 examples per
class. We converted the data to the DataManager format for
the evaluation.

The PaleoSketch data set with 9 classes (Figure 4) was
provided by [PH08]. It was also collected as isolated
shapes and has data from 20 participants, with each draw-
ing approximately 10 examples of each shape. The shape
classes are: arc, circle, complex, curve, ellipse, helix, line,
poly-line, and spiral. Complex and poly-line are catchall
classes that do not represent any particular visual element -
for example the adjacent star and random shape in Figure 3
are both categorized as 5 line polygons. There are some
corruptions in this file that we have not managed to identi-
fy – we have 50% of the data for the evaluation. This pro-
vided ample examples for accurate results.

For the trainable recognizers, Rata.SSR, $1 and Rubine,
we split each data set in half, trained on one half and tested
on the other, and then reversed the sets for another round.
There were small differences between the results for each
round, which are averaged for each data set.

Evaluating the fixed recognizers, CALI and PaleoSketch,
presented some problems - the raw tests when we did very
simple mappings of obviously related shapes (such as el-
lipses and circles) resulted in very poor recognition rates
37.5% and 50.68% respectively. For these recognizers we
also report success rates for those shapes that appear in
both the data set and recognizer. The FlowChart data set
can be fully evaluated as there are matching classes for
each class in CALI and PaleoSketch - however they do
classify some shapes as classes that do not exist in the
flowchart, for example spirals. For the $1 data set, we re-
moved Check, LeftCurly, Pigtail, RightCurly and Star for
PaleoSketch, using only Caret, Circle, LeftCurly, Rectangle,
RightCurly, v and Triangle for CALI. For the PaleoSketch
data set, CALI can only handle Arc, Circle, Ellipse and
Line; and for other recognizers, because of the variable
nature of the PaleoSketch complex and poly-line classes we
also report results with these two classes removed.

The evaluation is conducted with the evaluator imple-
mented within DataManager [SPB09]. The results are
shown in Table 3. In most cases Rata.SSR outperforms all
of the other algorithms. The exceptions are the $1 algo-
rithm on the $1 data set, and PaleoSketch on the Pa-
leoSketch data. The $1 - $1 evaluation achieves 1.11%
better result than Rata.SSR. All the trainable recognizers
suffer from the catchall poly-line classes in the raw Pa-
leoSketch data set – although Rata.SSR does achieve
89.9%. Tests without these classes show Rata.SSR per-
forming at a very similar rate to PaleoSketch and outper-
forming the other trainable recognizers. Most of the Ra-
ta.SSR errors remaining are between curve and arc, remov-
ing one of these classes or combining them increases Ra-
ta.SSR to 98.4% and PaleoSketch to 99.2%.

FlowChart

$1 PaleoSketch
Avg

All Part All Part

Rata.SSR 98.7 97.1 ‐‐ 89.9 94.9 96.9

$1 82.8 98.3 ‐‐ 78.9 89.8 90.3

Rubine 93.3 95.7 ‐‐ 41.2 46.1 78.4

CALI 85.2 37.5 85.1 42.2 95.0* 88.4

PaleoSketch 92.0 50.7 71.4 95.7 98.3 87.2

Table 3. Evaluation results for recognizers against three
data sets (All indicates all shape classes are used and Part
means some are removed as described. Note CALI on Pa-
leoSketch Part used even less class than the others)

6. Discussion

In this project we use algorithms from an existing ma-
chine learning library, and with careful analysis, to confi-
gure an ensemble recognizer that is accurate and flexible.
The first step was to explore a wide range of trainable algo-
rithms using a large feature set and three sets of diagram
data.

When exploring WEKA we found that there were many
algorithms that gave good results for ink feature data.

EUROGRAPHICS Workshop on Sketch-Based Interfaces and Modeling (2010)
Marc Alexa & Ellen Yi-Luen Do (Guest Editors)

© The Eurographics Association 2010.

However, we could not fully explore all of them; we chose
nine that performed well and represented a variety of dif-
ferent AI techniques. While this was not an exhaustive
exploration of available AI algorithms it is more compre-
hensive than has been reported elsewhere.

The nine selected algorithms were then individually
tuned using three data sets. WEKA offers many tuning
attributes for each algorithm. Computational constraints
meant we could not try combinations of attributes; instead
we found the optimal value for each attribute and then
combined all optimum values. Retesting the optimized
algorithms showed that most had improved about 1%, but
two had worse performance. For those two we carried the
original configuration through to the next phases.

Further optimization of the individual algorithms may be
possible by tuning the combination of settings. We believe
these values are related to the nature of the input data.
More data sets and a lot of computational power are needed
for further analysis. An area worth exploration is ways to
dynamically find the best configuration for each data set.

We found the attribute selection algorithms in WEKA
had very limited effect on the accuracy. It is likely this is
because the algorithms are already applying attribute selec-
tion type behavior such as a tree structure or a voting me-
chanism. Comparatively SMO and Multilayer Perceptron
had better performance with attribute selection – they ap-
plied neither tree structures nor voting mechanisms. The
improvement, however, is marginal. Considering the leng-
thened training time, in most situations we believe the ap-
plication of attribute selection is not required. However,
while recognition time with the current 114 features is
within real-time requirements, if more features are added,
minimizing the number of features to be calculated would
be sensible.

The ensemble proved effective with a 1% improvement
in recognition rate compared to the best performing algo-
rithm. To build the ensemble we tried voting and stacking,
and found that the voting algorithms consistently perform
better. It may be because the meta-algorithm used in stack-
ing is not effective; however, four different meta-
algorithms were used and none returned better result than
voting. We speculate the reason is because the algorithms
to be combined are all strong algorithms, and the errors
they generate are not caused by their inability in a whole
area, but due to noise in the data. Thus even when assign-
ing the best performing algorithm for a section, misclassifi-
cation would still occur. Furthermore, trying to find the
best algorithm may result in over-fitting. In comparison,
voting is more robust because it considers the probability
returned by different algorithms which may filter the noise.
As the algorithms we selected are all reasonably accurate,
the probability based voting resulted in improved accuracy.

Interestingly, the combination of the best algorithms
does not produce the best performing ensemble. This
shows different algorithms have different strengths. The
experiment data shows that Bagging, the worst performing
algorithm we used, sometimes can correctly recognize
shapes which the top performing Bayesian Network cannot.

To evaluate the optimized algorithms we explored 10
fold cross validation, random splitting and ordered splitting.

We favor ordered splitting as we believe that this more
closely emulates ‘out of the box’ recognizers – both ran-
dom splitting and 10 fold cross validation may have partic-
ipant participating in both training and testing data, and
cause optimistic result due to drawing style learning.

Both splitting experiments can demonstrate the relation-
ship between the number of training examples and the ac-
curacy. Most algorithms have over 90% accuracy with 20%
of our data as training examples. The accuracy of both
experiments increased with more training examples, hitting
maximum performance with 40-50% of our data sets.

From these results we suggest that as few as 10 examples
per class are sufficient to train any of these algorithms to
90% accuracy and 50 examples will give close-to-optimal
performance. Individualizing training data is likely to fur-
ther improve the resulting accuracy.

While there are still areas where further exploration is
possible we evaluated our best Ensemble against four other
recognizers using three data sets. Of particular note is the
performance of Rata.SSR against $1 on the $1 data set and
Rata.SSR against PaleoSketch on the PaleoSketch data set.
These data sets were collected to test the respective algo-
rithms, with the capabilities of that algorithm in mind. Ra-
ta.SSR performed almost as well as these recognizers on
their associated data sets and outperformed them on the
other data sets.

Both $1 and PaleoSketch performed well on their own
data sets. $1 is a trainable recognizer which has the poten-
tial to recognize different types of data. However its recog-
nition approach ignores much of the rich spatial and tem-
poral information that is available for digital ink. Pa-
leoSketch has hard coded modules for each shape it can
recognize. While it is possible to provide more shape types
to cover all possible shapes [PH08], such implementation
can also lead to a decrease in performance as the increase
in classes provides a higher potential for mistakes to occur
[Rub91]. Furthermore, although the heuristic based ap-
proach is easy to reason and program, we contend that
when the underlying relationships are more complex they
may not be human observable.

When measuring the evaluation results we were gener-
ous to the non-trainable recognizers PaleoSketch and CALI.
The advantage of trainable recognizers is evident when one
considers the widely varied performance of non trainable
algorithms against the different data sets.

Rata.SSR’s performance is due not only to the strength
of its algorithms, but also to the wide range of features
which capture the characteristics of the classes more com-
prehensively than in the other recognizers. It may be hard
to add these relationships into hard coded or template
matching approaches; however, they can be easily encapsu-
lated into features and used with unmodified training algo-
rithms. With our implementation, new features can be easi-
ly added into DataManager, which can be immediately
used with the WEKA algorithms.

Rata.SSR has been developed and evaluated in the con-
text of diagram recognition, as this is our principle area of
interest. Rata.SSR as presented here is also likely to pro-
duce a very good gesture recognizer for functional gestures
in the context of touch screen technology. The techniques

© The Eurographics Association 2008.

may also be useful for the following stages of diagram
recognition such as joining or splitting strokes and discern-
ing relationships between basic shapes and components.

7. Conclusions

In this study we undertook an extensive evaluation of a
wide range of data mining algorithms for recognizing digi-
tal ink. We examined both individual algorithms and en-
semble strategies using a rich feature set. The Rata.SSR
recognizer created as a result of this exploration is a soft-
ware component which allows recognizers to be easily
generated and used. Our comparative evaluation shows
Rata.SSR to be flexible and accurate. In addition the results
presented in Tables 2 and 3 provide some benchmarks
against which other similar algorithms can be measured.

Acknowledgements

Thanks to Associate Professor Eibe Frank for expert ad-
vice on WEKA and data mining techniques. This research
is partly funded by the Royal Society of New Zealand,
Marsden Fund.

References

[AK93] APTE A., VO V., KIMURA T. D.: Recognizing mul-
tistroke geometric shapes: an experimental evaluation.
In Proc. UIST ‘93 (1993), pp. 121-128.

[BCP10] BLAGOJEVIC R., CHANG S. H.-H., PLIMMER B.:
The Power of Automatic Feature Selection: Rubine on
Steroids. . In Proc. SBIM '10, (2010), in press

[BSS04] BASILI R., SERAFINI A. ,STELLATO A.: Classifica-
tion of musical genre: a machine learning approach. In
Proc. ISMIR '04 (2004)

[Bla09] BLAGOJEVIC R. DataManager. (2009), obtained
from
http://www.cs.auckland.ac.nz/research/hci/downloads/

[BPGW08] BLAGOJEVIC R., PLIMMER B., GRUNDY
J. ,WANG Y.: A data collection tool for sketched dia-
grams. 5th Eurographics Conference on Sketch Based
Interfaces and Modelling, (2008)

[CSKK02] CALHOUN C., STAHOVICH T. F., KURTOGLU
T. ,KARA L. B.: Recognizing Multi-Stroke Symbols.
AAAI Spring Symposium - Sketch Understanding,
(2002), pp. 15-23.

[CSJ00] CONNELL S. D., SINHA R. M. K. ,JAIN A. K.: Rec-
ognition of unconstrained on-line Devanagari charac-
ters. in Proc. 15th ICPR, (2000), pp. 368-371.

[FPJ02] FONSECA M. J., PIMENTEL C. ,JORGE J. A.: Cali:
An online scribble recognizer for calligraphic interfac-
es. AAAI Spring Symposium (2002), pp. 51-58.

[Fri09] FRIJTERS J.: IKVM.NET (Version0.40.0.1). Avail-
able from http://www.ikvm.net/. (2009),

[Gro94] GROSS M. D.: Recognizing and interpreting dia-
grams in design. Proceedings of the workshop on Ad-
vanced visual interfaces, (1994), pp. 88 - 94.

[HFH*09] HALL M., FRANK E., HOLMES G., PFAHRINGER
B., REUTEMANN P. ,WITTEN I. H.: The WEKA Data
Mining Software: An Update. SIGKDD Explorations,
1, 11 (2009)

[HEP*08] HAMMOND T., EOFF B., PAULSON B., WOLIN A.,
DAHMEN K., JOHNSTON J. ,RAJAN P.: Free-sketch rec-

ognition. putting the chi in sketching. CHI '08 ex-
tended abstracts on Human factors in computing sys-
tems, (2008), pp. 3027-3032.

[JGHD09] JOHNSON G., GROSS M. D., HONG J. ,DO E. Y.-
L.: Computational Support for Sketching in Design: A
Review. Foundations and Trends® in Human–
Computer Interaction, 1, 2 (2009), pp. 1-93.

[KS04] KARA L. B. ,STAHOVICH T. F.: Hierarchical Pars-
ing and Recognition of Hand-Sketched Diagrams.
UIST '04, (2004), pp. 13-22.

[LZ04] LAVIOLA J. ,ZELEZNIK R.: MathPad 2: A System
for the Creation and Exploration of Mathematical
Sketches. ACM Transactions on Graphics (Proceed-
ings of SIGGRAPH 2004), 3, 23 (2004), pp. 432-440.

[PPGI07] PATEL R., PLIMMER B., GRUNDY J. ,IHAKA R.:
Ink features for diagram recognition. Proceedings of
the 4th Eurographics workshop on Sketch-based inter-
faces and modeling, (2007), pp. 131-138.

[PH08] PAULSON B. ,HAMMOND T.: PaleoSketch: accurate
primitive sketch recognition and beautification. IUI
'08, (2008), pp. 1-10.

[PF07] PLIMMER B. ,FREEMAN I.: A toolkit approach to
sketched diagram recognition. Proceedings of HCI
2007 (2007), pp. 205-213.

[Rap10] RAPID-I RapidMiner. 2010, http://rapid-i.com/
[Rub91] RUBINE D.: Specifying gestures by example. Pro-

ceedings of the 18th ACM SIGGRAPH Computer Gra-
phics, (1991), pp. 329-337.

[SPB09] SCHMIEDER P., PLIMMER B. ,BLAGOJEVIC R.:
Automatic evaluation of sketch recognizers. Proceed-
ings of the 6th Eurographics Symposium on Sketch-
Based Interfaces and Modeling, (2009), pp. 85-92.

[SSD01] SEZGIN T. M., STAHOVICH T. ,DAVIS R.: Sketch
Based Interfaces: Early Processing for Sketch Under-
standing. International Conference on Computer
Graphics and Interactive Techniques, (2001)

[Tay08] TAY K. S.: Improving digital ink interpretation
through expected type prediction and dynamic dis-
patch. Pattern Recognition (ICPR), (2008), pp. 1-4.

[VA05] VOGT T. ,ANDRE E.: Comparing feature sets for
acted and spontaneous speech in view of automatic
emotion recognition. Multimedia and Expo (ICME),
(2005), pp. 474-477.

[WNGV09] WILLEMS D., NIELS R., GERVEN M.
V. ,VUURPIJL L.: Iconic and multi-stroke gesture rec-
ognition. Pattern Recogn., 12, 42 (2009), pp. 3303-
3312.

[WF05] WITTEN I. H. ,FRANK E. Data Mining: Practical
Machine Learning Tools and Techniques. In Morgan
Kaufmann, (2005)

[WWL09] WOBBROCK J. O., WILSON A. D. ,LI Y. $1 Un-
istroke Recognizer. (2009),
http://depts.washington.edu/aimgroup/proj/dollar/

[WWL07] WOBBROCK J. O., WILSON A. D. ,LI Y.: Ges-
tures without libraries, toolkits or training: a $1 recog-
nizer for user interface prototypes. UIST '07, (2007),
pp. 159 - 168

[YC03] YU B. ,CAI S.: A domain-independent system for
sketch recognition. GRAPHITE '03, (2003), pp. 141 -
146

